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II. Review of Special Relativity

The universe is described by a 4-dimensional space-time continuum. A proper
description of standard cosmological models requires the use of relativistic mechan-
ics. Although a full treatment of cosmological models requires the use of general
relativity, it turns out that most essential features can be derived by slight gener-
alizations of special relativity. This chapter reviews the essential concept of special
relativity and then focuses on the use of metrics in describing the space-time con-
tinuum.

Principles of Special Relativity

An important precept of special relativity is that one can establish global inertial
frames of reference. Although such frames have 4 dimensions (three space plus one
time), it is sufficient to consider just one spatial dimension (called it the x direction)
and time t. Within such a frame (call it frame 1), one can distribute observers who
are at rest with respect to one another, all of whom have the same coordinated time
t and who are separated by well-defined distances x. x and t are each arbitrary in
two ways: they can have an arbitrary origin and arbitrary dimensions. An event is
defined to be a particular point in the space-time continuum that is specified by a
unique x and t. From an operational point of view, the coordinates of any event
are measured by the observer who happens to be local to that event (such that
light travel time delays can be ignored). One can then imagine that that observer
then transmits the information to more distant observers in its frame of reference if
necessary. A moving particle follows a path x = x(t). If the particle is in free motion
and passes throught the point x = 0 at t = 0, then that path is x = vt, where v is a
constant velocity. There is nothing unconventional about these concepts, and they
are common to Newtonian dynamics.

Consider now a second inertial frame (frame 2) moving at velocity v with respect
to the first in the +x direction which has its own measures of time t′ and distances
x′. Let the origin of the space and time dimensions be defined so that the event
x = 0, t = 0 coincides with the event x′ = 0, t′ = 0. The unconventional aspect of
special relativity is how the coordinates of other events in the two inertial frames
are related. Let β = v/c (where c is the speed of light). Then

x′ =
x− vt√
1− β2

, (2.1a)

t′ =
t− vx/c2√

1− β2
, (2.1b)

x =
x′ + vt′√

1− β2
, (2.1c)

t =
t′ + vx′/c2√

1− β2
. (2.1d)

These equations abandon the concepts of the existence of a universal time and
of universal lengths. It is important to recognize that not only are length and
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time scales altered, but also the concept of simultaneity of events between different
frames of reference is destroyed (equations 2 and 4). For example, this means that
if all the observers in frame 1 compare their clocks at t = 0 with their neighbor-
ing counterparts in frame 2, then the times showing on the clocks of the frame
2 observers will not all be the same but rather will vary with position according

to t′ = −vx/c2
√

1− β2. This destruction of simultaneity leads to virtually all of
the apparent paradoxes in special relativity. It means that one must be particu-
larly careful about what is meant by measuring lengths and times of observers and
objects in moving frames.

The origin of frame 2 follows the path x′ = 0. In frame 1, this path is given by
x = vt. The origin of frame 1 follows the path x = 0. In frame 2, this path is given
by x′ = −vt′. Hence aside from the sign of v, the two frames observe each other in
a symmetric fashion.

Consider the path of a ray of light. In frame 1, the ray follows the path x = ct.
In frame 2, the above equations (either 2.1a and 2.1b together or 2.1c and 2.1d
together) give x′ = ct′. Hence the speed of a light ray is independent of the velocity
of the frame of reference. In special relativity, this property is assumed to be
fundamental, and one can then derive equations 2.1 accordingly.

To observers in frame 1, a standard yard stick moving by in frame 2 appears to
be shorter than 1 yard. This result appears paradoxical since an observer in frame
2 ought to see a frame 1 yardstick to be shorter as well, yet both ought not to be
true at the same time. The paradox is resolved by considering in detail just how
length measurements are made. Consider two observers in frame 1 who measure
the length of a yardstick moving by in frame 2. Since the yardstick is moving, it is
necessary to sample the beginning and end positions of the yardstick at the same
time t in order to make a meaningful measurement. ΘBy equation 2.1a above, if
the sampling occurs at t = 0 as measured in frame 1 and one end of the yardstick
lies at x = x′ = 0 at that time, then the other end of the yardstick has a coordinate

x = x′
√

1− β2. with x′ = 1 yard. Imagine that the two observers (at 0 and x in

frame 1) slap paint brushes on the yardstick at that time. The observers in frame
2 will not see the paint slaps occurring simultaneously, but the one at the front
of the yardstick will see a slap occuring earlier, at time t′ = −vx′/c2. Hence the
frame 2 observers will think that the frame 1 observers have not made a proper
measurement.

Another paradox of special relativity is the effect of “moving clocks run slow”.
The easiest way to resolve this paradox is to consider two ways that observers in
frame 1 can compare their clocks with observers in frame 2. The first way is to
consider a clock in frame 2 that sits at x′ = 0 and is compared with the nearest
clock in frame 1 as time passes and the clock in frame 2 moves relative to frame 1.

By equation 2.1d above, t′ = t
√

1− β2, i.e., the moving clock ticks at a slower rate
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than the clock in frame 1. However, another way to compare the clocks is for an
observer in frame 1 to sit at rest at x = 0 and look at the nearest clock in frame 2
as it passes by. Then by equation 2 above, one finds t′ = t/

√
1− β2, and so clocks

in the moving frame appear to tick faster. The differences arise because the details
of the measurement process are different.

The above examples show that the concepts of measuring distance and time do
not have the same meaning in special relativity as they do in Newtonian physics,
where time and distances can be measured independent of the motion of the frame
of reference. However, the concepts of absolute time and distances are so useful that
we might ask if they can be recovered even within special relativity. The answer
is yes. Consider once again the process by which we measure “lengths” of moving
yardsticks: because the yardstick is moving, what we do is specify two “events”
which happen to be the locations of each end of the yardstick at a specific time as
measured in frame 1 and then measure the distance between the two events. Now
we have not specified yet how to measure the distance between two events that do
not occur at the same time but we shall do so imminently. In any case, if the two
events do occur at the same time (as measured in our rest frame), then it makes
sense to define the distance between them to be the conventional linear distance
as measured with a yardstick. This reasoning applies to conventional Newtonian
physics as well. The major difference arises when we consider how to measure the
distances between two events that do not occur simultaneously. One measures both
a difference in position (∆x) and a difference in time (∆t). In Newtonian physics,
both invariant with respect to the observing frame. However, in special relativity,
that is not the case. Nevertheless, one can construct a single invariant quantity
by the following logic. Consider two spatially separated events that occur nearly
simulaneously in some reference frame. One can find a moving reference where the
two events are in fact precisely simultaneous and then the distance between them
is the conventional distance measured with a yardstick. We define this distance to
be the proper distance s between the two events. Let us say that that occurs in
frame 1 and that both events occurs at t = 0 with one being x = 0 and the other at
x = s. The question then arises, if we measure coordinates for the the other event
x′, t′, in some other frame of reference, can we combine them in some fashion so
as to recover the proper distance? The answer is yes, and to do so one can take
equations 2.1a and 2.1b above, set t = 0, combine the two to eliminate v, and then
solve for x. The solution is s2 = x2 = x′2 − c2t′2.

If the two events occurs close spatially but well separated in time, then it may
not be possible to find a frame where both occur simultaneously. In this case,
however, it is possible to find a frame where both occur at the same spatial position
but separated in time. The time difference between the two events as measured
by the single observer in this frame is called the proper time τ between the two
events. By the same reasoning as before, we find that τ 2 = t′2−x′2/c2. The choice
between s or τ between two events depends on whether the interval between them
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is “spacelike” or “timelike”.

To recapitulate, the way to measure the lengths of things is to go to a frame
where those things are at rest and then specify two events which are at either end of
the “thing” and which occur simultaneously in that rest frame. The proper distance
between those events is the convential yardstick measurement of distance. Likewise,
the way to measure elapsed time intervals is to go to a frame where the two events
that one wants to time occur at the same position. Then the proper time is the
ordinary elapsed clock time measured by an observer at that position.

Motion in Special Relativity

The concept of proper time can be generalized to the case of motion by an
accelerated particle. Along any small segment of the path followed by the particle,
the change in proper time ∆τ is given by ∆τ 2 = ∆t2 −∆x2/c2 where x and t are
coordinates of any inertial frame. Suppose the path of the particle is parameterized
by x = x(t). Then the elapsed proper time (= elapsed time of a clock carried along
with the particle) is

τ =
∫ √

1− (dx/dt)2dt. (2.2)

Consider once again two events separated by a time-like interval. One can draw
many paths that connect those two events, corresponding to different accelerated
observers. Each path measures its own elapsed time τ . One of those paths has a
maximum; it is called a geodesic. The equation describing a geodesic can be found
as follows. Equation 2.2 gives the elapsed proper time τ along some path x = x(t).
Pick a new path x′(t) = x(t) + δx(t), where δx is a small deviation that is 0 at
either endpoint of the path. The extra proper time along the new path is (after
substitution and expansion),

δτ = − 1

c2

∫ (dx/dt)(dδ/dt)√
1− (dx/dt)2/c2

dt. (2.3)

Integrating by parts, and remembering that δx is 0 at either endpoint of the
integral, one obtains

δτ = +
∫
δx(t)ẍ

d

dt

[
ẋ√

1− ẋ2

]
dt. (2.4)

If this is to be true for any arbitrary path deviation δx(t), then the quantity in
brackets must be independent of time. We recognize this quantity as the relativistic
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expression for linear momentum per unit rest mass. Thus, if the elapsed proper
time is an extremum, then the linear momentum is conserved, which is equivalent
to saying that the velocity is constant.


